[ACM TechTalks] Reduce System Complexity with Data-Oriented Programming
Kdy: | 25. 1. 2023, 18:00 – 19:00 |
---|---|
Kde: | online prostredníctvom služby Zoom |
Vložné: | zdarma, nutná registrácia |
Otázky k webináru ACM TechTalks môžete zadať vopred cez ACM Practitioners Board.
Webináre zo série ACM TechTalks sú určené študentom a odborníkom na počítačovú vedu a používateľom ACM Digital Library. Sú v angličtine online priamo vo vašom internetovom prehliadači a na prenos zvuku stačí, aby ste mali k počítaču pripojené reproduktory alebo slúchadlá.
Nevyhovuje vám čas? Pozrite si webináre TechTalks zo záznamu.
Máte otázky k ACM Digital Library? Dohodnite si osobné/online stretnutie alebo seminár pre vašu inštitúciu.
Invitation
Complexity is one of the main difficulties in the development of successful software systems. Modern programming languages and frameworks make it easy to develop and deploy our code quickly, but as the code base grows, complexity makes it challenging to add new features.
Data-oriented programming is a paradigm that aims at reducing the complexity of information systems such as back-end applications, web services, web workers, and front-end applications by rethinking data. Data-oriented programming treats data as an immutable value that is manipulated by general-purpose functions. Moreover, data is validated à la carte.
In this talk, we illustrate the principles of data-oriented programming in the context of a software production system. After attending this talk, you will be able to apply data-oriented programming principles in your preferred programming language and reduce the complexity of the systems you build.
Takeaways
- Apply Data-Oriented Programming principles in your preferred programming language.
- Apply data validation techniques without using static types.
- Represent data with immutable data structures.
- Manipulate data with generic functions.
- Speaker: Yehonathan Sharvit, Software Architect, Cycognito
Albertina icome Praha s.r.o., Štěpánská 16, 110 00 Praha 1
tel.: 222 231 212
e-mail: aip@aip.cz